Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Representation for SPD Matrices with Application to Image-Set Classification (2201.08962v1)

Published 22 Jan 2022 in cs.CV

Abstract: Collaborative representation-based classification (CRC) has demonstrated remarkable progress in the past few years because of its closed-form analytical solutions. However, the existing CRC methods are incapable of processing the nonlinear variational information directly. Recent advances illustrate that how to effectively model these nonlinear variational information and learn invariant representations is an open challenge in the community of computer vision and pattern recognition To this end, we try to design a new algorithm to handle this problem. Firstly, the second-order statistic, i.e., covariance matrix is applied to model the original image sets. Due to the space formed by a set of nonsingular covariance matrices is a well-known Symmetric Positive Definite (SPD) manifold, generalising the Euclidean collaborative representation to the SPD manifold is not an easy task. Then, we devise two strategies to cope with this issue. One attempts to embed the SPD manifold-valued data representations into an associated tangent space via the matrix logarithm map. Another is to embed them into a Reproducing Kernel Hilbert Space (RKHS) by utilizing the Riemannian kernel function. After these two treatments, CRC is applicable to the SPD manifold-valued features. The evaluations on four banchmarking datasets justify its effectiveness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rui Wang (996 papers)
  2. Xiao-Jun Wu (114 papers)
  3. Li chu (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.