Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neighborhood Preserved Sparse Representation for Robust Classification on Symmetric Positive Definite Matrices (1601.07336v1)

Published 27 Jan 2016 in cs.CV

Abstract: Due to its promising classification performance, sparse representation based classification(SRC) algorithm has attracted great attention in the past few years. However, the existing SRC type methods apply only to vector data in Euclidean space. As such, there is still no satisfactory approach to conduct classification task for symmetric positive definite (SPD) matrices which is very useful in computer vision. To address this problem, in this paper, a neighborhood preserved kernel SRC method is proposed on SPD manifolds. Specifically, by embedding the SPD matrices into a Reproducing Kernel Hilbert Space (RKHS), the proposed method can perform classification on SPD manifolds through an appropriate Log-Euclidean kernel. Through exploiting the geodesic distance between SPD matrices, our method can effectively characterize the intrinsic local Riemannian geometry within data so as to well unravel the underlying sub-manifold structure. Despite its simplicity, experimental results on several famous database demonstrate that the proposed method achieves better classification results than the state-of-the-art approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.