Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Frobenius functors, stable equivalences and $K$-theory of Gorenstein projective modules (2201.08000v3)

Published 20 Jan 2022 in math.KT and math.CT

Abstract: Owing to the difference in $K$-theory, an example by Dugger and Shipley implies that the equivalence of stable categories of Gorenstein projective modules should not be a Quillen equivalence. We give a sufficient and necessary condition for the Frobenius pair of faithful functors between two abelian categories to be a Quillen equivalence, which is also equivalent to that the Frobenius functors induce mutually inverse equivalences between stable categories of Gorenstein projective objects. We show that the category of Gorenstein projective objects is a Waldhausen category, then Gorenstein $K$-groups are introduced and characterized. As applications, we show that stable equivalences of Morita type preserve Gorenstein $K$-groups, CM-finiteness and CM-freeness. Two specific examples of path algebras are presented to illustrate the results, for which the Gorenstein $K_0$ and $K_1$-groups are calculated.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)