Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic congruences for diagonals of rational functions (1310.8635v2)

Published 31 Oct 2013 in math.NT, cs.SC, and math.CO

Abstract: In this paper we use the framework of automatic sequences to study combinatorial sequences modulo prime powers. Given a sequence whose generating function is the diagonal of a rational power series, we provide a method, based on work of Denef and Lipshitz, for computing a finite automaton for the sequence modulo $p\alpha$, for all but finitely many primes $p$. This method gives completely automatic proofs of known results, establishes a number of new theorems for well-known sequences, and allows us to resolve some conjectures regarding the Ap\'ery numbers. We also give a second method, which applies to an algebraic sequence modulo $p\alpha$ for all primes $p$, but is significantly slower. Finally, we show that a broad range of multidimensional sequences possess Lucas products modulo $p$.

Citations (61)

Summary

We haven't generated a summary for this paper yet.