Papers
Topics
Authors
Recent
Search
2000 character limit reached

Matrix Reordering for Noisy Disordered Matrices: Optimality and Computationally Efficient Algorithms

Published 17 Jan 2022 in math.ST, stat.ME, stat.ML, and stat.TH | (2201.06438v2)

Abstract: Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrix reordering based on a noisy disordered monotone Toeplitz matrix model. We establish the fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares estimator achieves the optimal rate. However, due to its computational complexity, we analyze a popular polynomial-time algorithm, spectral seriation, and show that it is suboptimal. To address this, we propose a novel polynomial-time adaptive sorting algorithm with guaranteed performance improvement. Simulations and analyses of two real single-cell RNA sequencing datasets demonstrate the superiority of our algorithm over existing methods.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.