Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sublinear Time Low-Rank Approximation of Toeplitz Matrices (2404.13757v1)

Published 21 Apr 2024 in cs.DS, cs.NA, and math.NA

Abstract: We present a sublinear time algorithm for computing a near optimal low-rank approximation to any positive semidefinite (PSD) Toeplitz matrix $T\in \mathbb{R}{d\times d}$, given noisy access to its entries. In particular, given entrywise query access to $T+E$ for an arbitrary noise matrix $E\in \mathbb{R}{d\times d}$, integer rank $k\leq d$, and error parameter $\delta>0$, our algorithm runs in time $\text{poly}(k,\log(d/\delta))$ and outputs (in factored form) a Toeplitz matrix $\widetilde{T} \in \mathbb{R}{d \times d}$ with rank $\text{poly}(k,\log(d/\delta))$ satisfying, for some fixed constant $C$, \begin{equation*} |T-\widetilde{T}|_F \leq C \cdot \max{|E|_F,|T-T_k|_F} + \delta \cdot |T|_F. \end{equation*} Here $|\cdot |_F$ is the Frobenius norm and $T_k$ is the best (not necessarily Toeplitz) rank-$k$ approximation to $T$ in the Frobenius norm, given by projecting $T$ onto its top $k$ eigenvectors. Our result has the following applications. When $E = 0$, we obtain the first sublinear time near-relative-error low-rank approximation algorithm for PSD Toeplitz matrices, resolving the main open problem of Kapralov et al. SODA 23, whose algorithm had sublinear query complexity but exponential runtime. Our algorithm can also be applied to approximate the unknown Toeplitz covariance matrix of a multivariate Gaussian distribution, given sample access to this distribution, resolving an open question of Eldar et al. SODA20. Our algorithm applies sparse Fourier transform techniques to recover a low-rank Toeplitz matrix using its Fourier structure. Our key technical contribution is the first polynomial time algorithm for \emph{discrete time off-grid} sparse Fourier recovery, which may be of independent interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Oblivious sketching of high-degree polynomial kernels. In Proceedings of the \nth31 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 141–160, 2020.
  2. A low-complexity adaptive beamformer for ultrasound imaging using structured covariance matrix. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 59(4):660–667, 2012.
  3. Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays. IEEE Transactions on Signal Processing, 47(6):1502–1521, 1999.
  4. Koenraad MR Audenaert. A norm compression inequality for block partitioned positive semidefinite matrices. Linear algebra and its applications, 413(1):155–176, 2006.
  5. What’s the frequency, Kenneth?: Sublinear Fourier sampling off the grid. Algorithmica, 73:261–288, 2015.
  6. Robust and sample optimal algorithms for PSD low rank approximation. In Proceedings of the \nth61 Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 506–516, 2020.
  7. James R Bunch. Stability of methods for solving Toeplitz systems of equations. SIAM Journal on Scientific and Statistical Computing, 6(2):349–364, 1985.
  8. Optimising experimental design for meg beamformer imaging. Neuroimage, 39(4):1788–1802, 2008.
  9. Sublinear time low-rank approximation of distance matrices. Advances in Neural Information Processing Systems 31 (NeurIPS), 31, 2018.
  10. Exact and stable covariance estimation from quadratic sampling via convex programming. IEEE Transactions on Information Theory, 61(7):4034–4059, 2015.
  11. Sparse doppler sensing based on nested arrays. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 65(12):2349–2364, 2018.
  12. Dimensionality reduction for k-means clustering and low rank approximation. In Proceedings of the \nth47 Annual ACM Symposium on Theory of Computing (STOC), pages 163–172, 2015.
  13. Structured low rank approximation. Linear Algebra and its Applications, 366:157–172, 2003.
  14. Fourier-sparse interpolation without a frequency gap. In Proceedings of the \nth57 Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 741–750, 2016.
  15. Estimating the Frequency of a Clustered Signal. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), 2019.
  16. Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction. Applied and Computational Harmonic Analysis, 41(2):470–490, 2016.
  17. Analog-to-digital cognitive radio: Sampling, detection, and hardware. IEEE Signal Processing Magazine, 35(1):137–166, 2018.
  18. George Cybenko. Moment problems and low rank Toeplitz approximations. Circuits, Systems and Signal Processing, 1(3):345–366, 1982.
  19. Gaspard Riche de Prony. Essai experimental et analytique: sur les lois de la dilatabilite des fluides elastique et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, a differentes temperatures. Journal Polytechnique ou Bulletin du Travail fait a l’Ecole Centrale des Travaux Publics, 1795.
  20. Sample efficient Toeplitz covariance estimation. In Proceedings of the \nth31 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 378–397, 2020.
  21. Hankel matrix rank minimization with applications to system identification and realization. SIAM Journal on Matrix Analysis and Applications, 34(3):946–977, 2013.
  22. Daniel R Fuhrmann. Application of Toeplitz covariance estimation to adaptive beamforming and detection. IEEE Transactions on Signal Processing, 39(10):2194–2198, 1991.
  23. Mehrdad Ghadiri. On symmetric factorizations of Hankel matrices. Proceedings of the \nth64 Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2023.
  24. Recent developments in the sparse Fourier transform: A compressed Fourier transform for big data. IEEE Signal Processing Magazine, 31(5):91–100, 2014.
  25. Robert M Gray. Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory, 2(3):155–239, 2006.
  26. Matrix computations. JHU press, 2013.
  27. Nearly optimal sparse Fourier transform. In Proceedings of the \nth44 Annual ACM Symposium on Theory of Computing (STOC), pages 563–578, 2012.
  28. Simple and practical algorithm for sparse Fourier transform. In Proceedings of the \nth23 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012.
  29. Sample-optimal Fourier sampling in any constant dimension. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 514–523. IEEE, 2014.
  30. (Nearly) sample-optimal sparse Fourier transform. In Proceedings of the \nth25 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.
  31. Factorization approach to structured low-rank approximation with applications. SIAM Journal on Matrix Analysis and Applications, 35(3):1180–1204, 2014.
  32. Sample-optimal low-rank approximation of distance matrices. In Proceedings of the \nth32 Annual Conference on Computational Learning Theory (COLT), pages 1723–1751. PMLR, 2019.
  33. Super-resolution and robust sparse continuous Fourier transform in any constant dimension: Nearly linear time and sample complexity. In Proceedings of the \nth34 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2023.
  34. Michael Kapralov. Sparse Fourier transform in any constant dimension with nearly-optimal sample complexity in sublinear time. In Proceedings of the \nth48 Annual ACM Symposium on Theory of Computing (STOC), 2016.
  35. Toeplitz low-rank approximation with sublinear query complexity. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 4127–4158, 2023.
  36. Optimal rank-1 Hankel approximation of matrices: Frobenius norm and spectral norm and Cadzow’s algorithm. Linear Algebra and its Applications, 629:1–39, 2021.
  37. Two decades of array signal processing research: the parametric approach. IEEE signal processing magazine, 13(4):67–94, 1996.
  38. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 13(4):67–94, 1996.
  39. Low-rank Toeplitz matrix estimation via random ultra-sparse rulers. In Proceedings of the 2020 International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 4796–4800, 2020.
  40. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, pages 1302–1338, 2000.
  41. A symmetric rank-revealing Toeplitz matrix decomposition. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 14(1):19–28, 1996.
  42. Signal processing in cognitive radio. Proceedings of the IEEE, 97(5):805–823, 2009.
  43. Recursive sampling for the Nyström method. In Advances in Neural Information Processing Systems 30 (NeurIPS), 2017.
  44. Polynomial probability distribution estimation using the method of moments. PloS One, 12(4), 2017.
  45. A fast algorithm for convolutional structured low-rank matrix recovery. IEEE Transactions on Computational Imaging, 3(4):535–550, 2017.
  46. The complexity of the matrix eigenproblem. In Proceedings of the \nth31 Annual ACM Symposium on Theory of Computing (STOC), pages 507–516, 1999.
  47. Low rank approximation of a Hankel matrix by structured total least norm. BIT Numerical Mathematics, 39(4):757–779, 1999.
  48. Gridless line spectrum estimation and low-rank Toeplitz matrix compression using structured samplers: A regularization-free approach. IEEE Transactions on Signal Processing, 65(9):2221–2236, 2017.
  49. Alessandro Rinaldo. Lecture 7. In Lecture notes on Advanced Statistical Theory, CMU, 2017.
  50. Interferometric synthetic aperture microwave radiometry for the remote sensing of the earth. IEEE Transactions on geoscience and remote sensing, 26(5):597–611, 1988.
  51. Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In 2006 47th annual IEEE symposium on foundations of computer science (FOCS’06), pages 143–152. IEEE, 2006.
  52. The use of maximum likelihood estimation for forming images of diffuse radar targets from delay-doppler data. IEEE Transactions on Information Theory, 35(3):536–548, 1989.
  53. Sublinear time numerical linear algebra for structured matrices. In AAAI Conference on Artificial Intelligence, 2019.
  54. Toeplitz matrix completion via a low-rank approximation algorithm. Journal of Inequalities and Applications, 2020(1):1–13, 2020.
  55. David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in Theoretical Computer Science, 10(1–2):1–157, 2014.
  56. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation. IEEE Transactions on Vehicular Technology, 2017.
  57. Superfast and stable structured solvers for Toeplitz least squares via randomized sampling. SIAM Journal on Matrix Analysis and Applications, 35(1):44–72, 2014.
  58. A superfast structured solver for Toeplitz linear systems via randomized sampling. SIAM Journal on Matrix Analysis and Applications, 33(3):837–858, 2012.
  59. Tight kernel query complexity of kernel ridge regression and kernel k𝑘kitalic_k-means clustering. In Proceedings of the \nth36 International Conference on Machine Learning (ICML), pages 7055–7063, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Cameron Musco (82 papers)
  2. Kshiteej Sheth (8 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com