Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Online Learning: an Optimistically Universal Learning Rule (2201.05947v2)

Published 16 Jan 2022 in cs.LG and stat.ML

Abstract: We study the subject of universal online learning with non-i.i.d. processes for bounded losses. The notion of an universally consistent learning was defined by Hanneke in an effort to study learning theory under minimal assumptions, where the objective is to obtain low long-run average loss for any target function. We are interested in characterizing processes for which learning is possible and whether there exist learning rules guaranteed to be universally consistent given the only assumption that such learning is possible. The case of unbounded losses is very restrictive, since the learnable processes almost surely visit a finite number of points and as a result, simple memorization is optimistically universal. We focus on the bounded setting and give a complete characterization of the processes admitting strong and weak universal learning. We further show that k-nearest neighbor algorithm (kNN) is not optimistically universal and present a novel variant of 1NN which is optimistically universal for general input and value spaces in both strong and weak setting. This closes all COLT 2021 open problems posed by Hanneke on universal online learning.

Citations (10)

Summary

We haven't generated a summary for this paper yet.