Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Schur multipliers in Schatten-von Neumann classes (2201.05511v4)

Published 14 Jan 2022 in math.FA and math.OA

Abstract: We establish a rather unexpected and simple criterion for the boundedness of Schur multipliers $S_M$ on Schatten $p$-classes which solves a conjecture proposed by Mikael de la Salle. Given $1 < p < \infty$, a simple form our main result reads for $\mathbf{R}n \times \mathbf{R}n$ matrices as follows $$\big| S_M: S_p \to S_p \big|{\mathrm{cb}} \lesssim \frac{p2}{p-1} \sum{|\gamma| \le [\frac{n}{2}] +1} \Big| |x-y|{|\gamma|} \Big{ \big| \partial_x\gamma M(x,y) \big| + \big| \partial_y\gamma M(x,y) \big| \Big} \Big|_\infty.$$ In this form, it is a full matrix (nonToeplitz/nontrigonometric) amplification of the H\"ormander-Mikhlin multiplier theorem, which admits lower fractional differentiability orders $\sigma > \frac{n}{2}$ as well. It trivially includes Arazy's conjecture for $S_p$-multipliers and extends it to $\alpha$-divided differences. It also leads to new Littlewood-Paley characterizations of $S_p$-norms and strong applications in harmonic analysis for nilpotent and high rank simple Lie group algebras.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube