Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Type IIB parabolic ($p,q$)-strings from M2-branes with fluxes (2201.04896v3)

Published 13 Jan 2022 in hep-th

Abstract: We extend the work of Schwarz [1] to show that bound states of type IIB supersymmetric ($p, q$)-strings on a circle are associated with M2-branes irreducibly wrapped on $T2$, or equivalently with nontrivial worldvolume fluxes. Beyond this extension we consider the Hamiltonian of an M2-brane with $C_{\pm}$ fluxes formulated on a symplectic torus bundle with monodromy. In particular, we analyze the relevant case when the monodromy is parabolic. We show that the Hamiltonian is defined in terms of the coinvariant module. We also find that the mass operator is invariant under transformations between inequivalent coinvariants. These coinvariants classify the inequivalent classes of twisted torus bundles with nontrivial monodromy for a given flux. We obtain their associated ($p,q$)-strings via double dimensional reduction, which are invariant under a parabolic subgroup of $SL(2,\mathbb{Q})$. This is the origin of the gauge symmetry of the associated gauged supergravity. These bound states could also be related to the parabolic Scherk-Schwarz reductions of type IIB string theory.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.