Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reducing Noise Level in Differential Privacy through Matrix Masking

Published 11 Jan 2022 in cs.CR, math.ST, and stat.TH | (2201.04211v2)

Abstract: Differential privacy schemes have been widely adopted in recent years to address issues of data privacy protection. We propose a new Gaussian scheme combining with another data protection technique, called random orthogonal matrix masking, to achieve $(\varepsilon, \delta)$-differential privacy (DP) more efficiently. We prove that the additional matrix masking significantly reduces the rate of noise variance required in the Gaussian scheme to achieve $(\varepsilon, \delta)-$DP in big data setting. Specifically, when $\varepsilon \to 0$, $\delta \to 0$, and the sample size $n$ exceeds the number $p$ of attributes by $(n-p)=O(ln(1/\delta))$, the required additive noise variance to achieve $(\varepsilon, \delta)$-DP is reduced from $O(ln(1/\delta)/\varepsilon2)$ to $O(1/\varepsilon)$. With much less noise added, the resulting differential privacy protected pseudo data sets allow much more accurate inferences, thus can significantly improve the scope of application for differential privacy.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.