Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Private and polynomial time algorithms for learning Gaussians and beyond (2111.11320v3)

Published 22 Nov 2021 in stat.ML, cs.DS, cs.IT, cs.LG, and math.IT

Abstract: We present a fairly general framework for reducing $(\varepsilon, \delta)$ differentially private (DP) statistical estimation to its non-private counterpart. As the main application of this framework, we give a polynomial time and $(\varepsilon,\delta)$-DP algorithm for learning (unrestricted) Gaussian distributions in $\mathbb{R}d$. The sample complexity of our approach for learning the Gaussian up to total variation distance $\alpha$ is $\widetilde{O}(d2/\alpha2 + d2\sqrt{\ln(1/\delta)}/\alpha \varepsilon + d\ln(1/\delta) / \alpha \varepsilon)$ matching (up to logarithmic factors) the best known information-theoretic (non-efficient) sample complexity upper bound due to Aden-Ali, Ashtiani, and Kamath (ALT'21). In an independent work, Kamath, Mouzakis, Singhal, Steinke, and ULLMan (arXiv:2111.04609) proved a similar result using a different approach and with $O(d{5/2})$ sample complexity dependence on $d$. As another application of our framework, we provide the first polynomial time $(\varepsilon, \delta)$-DP algorithm for robust learning of (unrestricted) Gaussians with sample complexity $\widetilde{O}(d{3.5})$. In another independent work, Kothari, Manurangsi, and Velingker (arXiv:2112.03548) also provided a polynomial time $(\varepsilon, \delta)$-DP algorithm for robust learning of Gaussians with sample complexity $\widetilde{O}(d8)$.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com