Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Magnetochiral Charge Pumping due to Charge Trapping and Skin Effect in Chirality-Induced Spin Selectivity (2201.03623v4)

Published 10 Jan 2022 in cond-mat.mes-hall

Abstract: Chirality-induced spin selectivity (CISS) generates giant spin polarization in transport through chiral molecules, paving the way for novel spintronic devices and enantiomer separation. Unlike conventional transport, CISS magnetoresistance (MR) violates Onsager's reciprocal relation, exhibiting significant resistance changes when reversing electrode magnetization at zero bias. However, its underlying mechanism remains unresolved. In this work, we propose that CISS MR originates from charge trapping that modifies the electron tunneling barrier and circumvents Onsager's relation, distinct from previous spin polarization-based models. Charge trapping is governed by the non-Hermitian skin effect, where dissipation leads to exponential wavefunction localization at the ferromagnet-chiral molecule interface. Reversing magnetization or chirality alters the localization direction, changing the occupation of impurity/defect states in the molecule (i.e., charge trapping) -- a phenomenon we term magnetochiral charge pumping. Our theory explains why CISS MR can far exceed the ferromagnet spin polarization and why chiral molecules violate the reciprocal relation but chiral metals do not. Furthermore, it predicts exotic phenomena beyond the conventional CISS framework, including asymmetric MR induced by magnetic fields alone (without ferromagnetic electrodes), as confirmed by recent experiments. This work offers a deeper understanding of CISS and opens avenues for controlling electrostatic interactions in chemical and biological systems through the magnetochiral charge pumping.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Siegel, J. S. Homochiral imperative of molecular evolution. Chirality 10, 24–27 (1998). URL https://onlinelibrary.wiley.com/doi/10.1002/chir.5.
  2. Gohler, B. et al. Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science 331, 894 – 897 (2011). URL https://www.science.org/doi/full/10.1126/science.1199339.
  3. Chiral-Induced Spin Selectivity Effect. The Journal of Physical Chemistry Letters 3, 2178–2187 (2012). URL https://pubs.acs.org/doi/10.1021/jz300793y.
  4. Chiral molecules and the electron spin. Nature Reviews Chemistry 3, 250–260 (2019). URL https://www.nature.com/articles/s41570-019-0087-1.
  5. Advances and challenges in single-molecule electron transport. Rev. Mod. Phys. 92, 035001 (2020). URL https://link.aps.org/doi/10.1103/RevModPhys.92.035001.
  6. Evers, F. et al. Theory of chirality induced spin selectivity: Progress and challenges. Advanced Materials 34, 2106629 (2022). URL https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202106629.
  7. Temperature-dependent chiral-induced spin selectivity effect: Experiments and theory. The Journal of Physical Chemistry C 126, 3257–3264 (2022). URL https://pubs.acs.org/doi/10.1021/acs.jpcc.1c10550.
  8. Chirality-induced spin selectivity (ciss) effect: Magnetocurrent–voltage characteristics with coulomb interactions i. The Journal of Physical Chemistry C 127, 6900–6905 (2023). URL https://pubs.acs.org/doi/10.1021/acs.jpcc.2c088070.
  9. Spinterface Origin for the Chirality-Induced Spin-Selectivity Effect. Journal of the American Chemical Society 143, 14235–14241 (2021). URL https://pubs.acs.org/doi/10.1021/jacs.1c05637.
  10. Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano letters 11, 4652–5 (2011). URL https://pubs.acs.org/doi/10.1021/nl2021637.
  11. Kiran, V. et al. Helicenes-A New Class of Organic Spin Filter. Advanced Materials 28, 1957–1962 (2016). URL https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201504725.
  12. Varade, V. et al. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Physical Chemistry Chemical Physics 20, 1091–1097 (2018). URL https://pubs.rsc.org/en/content/articlelanding/2018/cp/c7cp06771b.
  13. Liu, T. et al. Linear and nonlinear two-terminal spin-valve effect from chirality-induced spin selectivity. ACS Nano 14, 15983–15991 (2020). URL https://pubs.acs.org/doi/10.1021/acsnano.0c07438.
  14. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021). URL https://www.science.org/doi/full/10.1126/science.abf5291.
  15. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). URL https://www.nature.com/articles/s41586-022-04846-3.
  16. Adhikari, Y. et al. Interplay of structure chirality, electron spin and topological orbital in chiral molecular spin valves. arXiv:2209.08117 (2022). URL https://arxiv.org/abs/2209.08117.
  17. Al-Bustami, H. et al. Atomic and molecular layer deposition of chiral thin films showing up to 99% spin selective transport. Nano Letters 22, 5022–5028 (2022). URL https://doi.org/10.1021/acs.nanolett.2c01953. https://doi.org/10.1021/acs.nanolett.2c01953.
  18. Kulkarni, C. et al. Highly Efficient and Tunable Filtering of Electrons’ Spin by Supramolecular Chirality of Nanofiber?Based Materials. Advanced Materials 32, 1904965 (2020). URL https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201904965.
  19. Mishra, S. et al. Length-Dependent Electron Spin Polarization in Oligopeptides and DNA. The Journal of Physical Chemistry C 124, 10776–10782 (2020). URL https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02291.
  20. Julliere, M. Tunneling between ferromagnetic films. Physics Letters A 54, 225–226 (1975).
  21. Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. Physical Review B 99, 024418 (2019). URL https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.024418. 1810.02662.
  22. Detecting chirality in two-terminal electronic nanodevices. Nano Letters 20, 6148–6154 (2020). URL https://pubs.acs.org/doi/10.1021/acs.nanolett.0c02417.
  23. Comment on “Spin-dependent electron transmission model for chiral molecules in mesoscopic devices”. Physical Review B 101, 026403 (2020). URL https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.024418.
  24. Reply to “comment on ‘spin-dependent electron transmission model for chiral molecules in mesoscopic devices”’. Phys. Rev. B 101, 026404 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.101.026404.
  25. Theory of Chiral Induced Spin Selectivity. Nano Letters 19, 5253–5259 (2019). URL https://pubs.acs.org/doi/10.1021/acs.nanolett.9b01707.
  26. Chirality-driven topological electronic structure of dna-like materials. Nature Materials 6, 638?644 (2021). URL https://www.nature.com/articles/s41563-021-00924-5.
  27. Electrical Magnetochiral Anisotropy. Physical Review Letters 87, 236602 (2001). URL https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.87.236602.
  28. Strong electrical magnetochiral anisotropy in tellurium. Phys. Rev. B 99, 245153 (2019). URL https://link.aps.org/doi/10.1103/PhysRevB.99.245153.
  29. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nature Communications 5, 3757 (2014). URL https://www.nature.com/articles/ncomms4757.
  30. Anomalous nonreciprocal electrical transport on chiral magnetic order. Phys. Rev. Lett. 122, 057206 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.122.057206.
  31. Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal crnb3⁢s6subscriptcrnb3subscripts6{\mathrm{crnb}}_{3}{\mathrm{s}}_{6}roman_crnb start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_s start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT. Phys. Rev. Lett. 124, 166602 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.124.166602.
  32. Shiota, K. et al. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. Phys. Rev. Lett. 127, 126602 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.127.126602.
  33. Niu, C. et al. Tunable nonreciprocal electrical transport in 2D Tellurium with different chirality. arXiv (2022). 2201.08829.
  34. Onsager, L. Reciprocal relations in irreversible processes. i. Phys. Rev. 37, 405–426 (1931). URL https://link.aps.org/doi/10.1103/PhysRev.37.405.
  35. Chapter xii - fluctuations. In Landau, L. & Lifshitz, E. (eds.) Statistical Physics (Third Edition), 333–400 (Butterworth-Heinemann, Oxford, 1980), third edition edn. URL https://www.sciencedirect.com/science/article/pii/B9780080570464500191.
  36. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nature Physics 13, 578–583 (2017).
  37. Chirality-induced giant unidirectional magnetoresistance in twisted bilayer graphene. The Innovation 2, 100085 (2021). URL https://www.sciencedirect.com/science/article/pii/S2666675821000102.
  38. Unification of nonlinear anomalous hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. arXiv preprint arXiv:2211.17213 (2022). URL https://arxiv.org/abs/2211.17213.
  39. Unusual Spin Polarization in the Chirality-Induced Spin Selectivity. ACS Nano 16, 18601–18607 (2022). URL https://pubs.acs.org/doi/10.1021/acsnano.2c07088.
  40. Chiral-Induced Spin Selectivity and Non-equilibrium Spin Accumulation in Molecules and Interfaces: A First-Principles Study. The Journal of Physical Chemistry Letters 14, 694–701 (2023). URL https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03747.
  41. Ghosh, S. et al. Effect of Chiral Molecules on the Electrons’ Spin Wavefunction at Interfaces. The Journal of Physical Chemistry Letters 11, 1550–1557 (2020). URL https://pubs.acs.org/doi/10.1021/acs.jpclett.9b03487.
  42. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. The Journal of Chemical Physics 139, 114111 (2013). URL https://aip.scitation.org/doi/10.1063/1.4820907. 1306.4904.
  43. Coropceanu, V. et al. Charge Transport in Organic Semiconductors. Chemical Reviews 107, 926–952 (2007).
  44. Intrinsic Charge Trapping in Organic and Polymeric Semiconductors: A Physical Chemistry Perspective. The Journal of Physical Chemistry Letters 1, 628–635 (2010).
  45. Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. Journal of Materials Chemistry C 8, 759–787 (2019).
  46. Gold nanoparticle-pentacene memory transistors. Applied Physics Letters 92, 103314 (2008). 0802.2633.
  47. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Applied Physics Letters 94, 132103 (2009).
  48. Organic electronics for neuromorphic computing. Nature Electronics 1, 386–397 (2018).
  49. Park, J. et al. Controlled hysteresis of conductance in molecular tunneling junctions. ACS Nano 16, 4206–4216 (2022). URL https://doi.org/10.1021/acsnano.1c10155.
  50. Abendroth, J. M. et al. Spin-Dependent Ionization of Chiral Molecular Films. Journal of the American Chemical Society 141, 3863–3874 (2019). URL https://pubs.acs.org/doi/10.1021/jacs.8b08421.
  51. Simmons, J. G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics 34, 1793–1803 (1963). URL https://pubs.aip.org/aip/jap/article/34/6/1793/362794/Generalized-Formula-for-the-Electric-Tunnel-Effect.
  52. Akkerman, H. B. et al. Electron tunneling through alkanedithiol self-assembled monolayers in large-area molecular junctions. Proceedings of the National Academy of Sciences 104, 11161–11166 (2007). URL https://www.pnas.org/doi/10.1073/pnas.0701472104.
  53. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annual Review of Physical Chemistry 66, 263 – 281 (2015). URL https://www.annualreviews.org/doi/abs/10.1146/annurev-physchem-040214-121554.
  54. Moire bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences 108 (2011). URL https://www.pnas.org/content/108/30/12233. 1009.4203.
  55. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018). URL https://www.nature.com/articles/nature26154.
  56. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). URL https://www.nature.com/articles/nature26160.
  57. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.122.086402.
  58. Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.102.201115.
  59. Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021). URL https://doi.org/10.1038/s41586-021-03815-6.
  60. Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nature Nanotechnology 17, 934–939 (2022). URL https://www.nature.com/articles/s41565-022-01180-7.
  61. Stacking domain wall magnons in twisted van der waals magnets. Phys. Rev. Lett. 125, 247201 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.125.247201.
  62. Flat chern band from twisted bilayer mnbi2⁢te4subscriptmnbi2subscriptte4{\mathrm{mnbi}}_{2}{\mathrm{te}}_{4}roman_mnbi start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_te start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. Phys. Rev. Lett. 124, 126402 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.124.126402.
  63. Kim, J. et al. Observation of plateau-like magnetoresistance in twisted fe3gete2/fe3gete2 junction. Journal of Applied Physics 128, 093901 (2020). URL https://aip.scitation.org/doi/full/10.1063/5.0012305.
  64. Inbar, A. et al. The quantum twisting microscope. Nature 614, 682–687 (2023). URL https://www.nature.com/articles/s41586-022-05685-y.
  65. Alpern, H. et al. Unconventional superconductivity induced in nb films by adsorbed chiral molecules. New Journal of Physics 18, 113048 (2016). URL https://doi.org/10.1088/1367-2630/18/11/113048.
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com