Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BERT for Sentiment Analysis: Pre-trained and Fine-Tuned Alternatives (2201.03382v1)

Published 10 Jan 2022 in cs.CL

Abstract: BERT has revolutionized the NLP field by enabling transfer learning with LLMs that can capture complex textual patterns, reaching the state-of-the-art for an expressive number of NLP applications. For text classification tasks, BERT has already been extensively explored. However, aspects like how to better cope with the different embeddings provided by the BERT output layer and the usage of language-specific instead of multilingual models are not well studied in the literature, especially for the Brazilian Portuguese language. The purpose of this article is to conduct an extensive experimental study regarding different strategies for aggregating the features produced in the BERT output layer, with a focus on the sentiment analysis task. The experiments include BERT models trained with Brazilian Portuguese corpora and the multilingual version, contemplating multiple aggregation strategies and open-source datasets with predefined training, validation, and test partitions to facilitate the reproducibility of the results. BERT achieved the highest ROC-AUC values for the majority of cases as compared to TF-IDF. Nonetheless, TF-IDF represents a good trade-off between the predictive performance and computational cost.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Frederico Souza (2 papers)
  2. João Filho (2 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.