Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mono vs Multilingual BERT for Hate Speech Detection and Text Classification: A Case Study in Marathi (2204.08669v1)

Published 19 Apr 2022 in cs.CL and cs.LG

Abstract: Transformers are the most eminent architectures used for a vast range of Natural Language Processing tasks. These models are pre-trained over a large text corpus and are meant to serve state-of-the-art results over tasks like text classification. In this work, we conduct a comparative study between monolingual and multilingual BERT models. We focus on the Marathi language and evaluate the models on the datasets for hate speech detection, sentiment analysis and simple text classification in Marathi. We use standard multilingual models such as mBERT, indicBERT and xlm-RoBERTa and compare with MahaBERT, MahaALBERT and MahaRoBERTa, the monolingual models for Marathi. We further show that Marathi monolingual models outperform the multilingual BERT variants on five different downstream fine-tuning experiments. We also evaluate sentence embeddings from these models by freezing the BERT encoder layers. We show that monolingual MahaBERT based models provide rich representations as compared to sentence embeddings from multi-lingual counterparts. However, we observe that these embeddings are not generic enough and do not work well on out of domain social media datasets. We consider two Marathi hate speech datasets L3Cube-MahaHate, HASOC-2021, a Marathi sentiment classification dataset L3Cube-MahaSent, and Marathi Headline, Articles classification datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Abhishek Velankar (4 papers)
  2. Hrushikesh Patil (7 papers)
  3. Raviraj Joshi (76 papers)
Citations (29)