Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ADRA: Extending Digital Computing-in-Memory with Asymmetric Dual-Row-Activation (2201.01509v2)

Published 5 Jan 2022 in cs.AR

Abstract: Computing in-memory (CiM) has emerged as an attractive technique to mitigate the von-Neumann bottleneck. Current digital CiM approaches for in-memory operands are based on multi-wordline assertion for computing bit-wise Boolean functions and arithmetic functions such as addition. However, most of these techniques, due to the many-to-one mapping of input vectors to bitline voltages, are limited to CiM of commutative functions, leaving out an important class of computations such as subtraction. In this paper, we propose a CiM approach, which solves the mapping problem through an asymmetric wordline biasing scheme, enabling (a) simultaneous single-cycle memory read and CiM of primitive Boolean functions (b) computation of any Boolean function and (c) CiM of non-commutative functions such as subtraction and comparison. While the proposed technique is technology-agnostic, we show its utility for ferroelectric transistor (FeFET)-based non-volatile memory. Compared to the standard near-memory methods (which require two full memory accesses per operation), we show that our method can achieve a full scale two-operand digital CiM using just one memory access, leading to a 23.2% - 72.6% decrease in energy-delay product (EDP).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Akul Malhotra (9 papers)
  2. Atanu K. Saha (11 papers)
  3. Chunguang Wang (9 papers)
  4. Sumeet K. Gupta (15 papers)
Citations (5)