Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust Visual Sampling Model Inspired by Receptive Field (2201.01030v1)

Published 4 Jan 2022 in cs.CV

Abstract: Spike camera mimicking the retina fovea can report per-pixel luminance intensity accumulation by firing spikes. As a bio-inspired vision sensor with high temporal resolution, it has a huge potential for computer vision. However, the sampling model in current Spike camera is so susceptible to quantization and noise that it cannot capture the texture details of objects effectively. In this work, a robust visual sampling model inspired by receptive field (RVSM) is proposed where wavelet filter generated by difference of Gaussian (DoG) and Gaussian filter are used to simulate receptive field. Using corresponding method similar to inverse wavelet transform, spike data from RVSM can be converted into images. To test the performance, we also propose a high-speed motion spike dataset (HMD) including a variety of motion scenes. By comparing reconstructed images in HMD, we find RVSM can improve the ability of capturing information of Spike camera greatly. More importantly, due to mimicking receptive field mechanism to collect regional information, RVSM can filter high intensity noise effectively and improves the problem that Spike camera is sensitive to noise largely. Besides, due to the strong generalization of sampling structure, RVSM is also suitable for other neuromorphic vision sensor. Above experiments are finished in a Spike camera simulator.

Summary

We haven't generated a summary for this paper yet.