Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Retina-inspired Sampling Method for Visual Texture Reconstruction (1907.08769v1)

Published 20 Jul 2019 in eess.IV, cs.CV, and cs.MM

Abstract: Conventional frame-based camera is not able to meet the demand of rapid reaction for real-time applications, while the emerging dynamic vision sensor (DVS) can realize high speed capturing for moving objects. However, to achieve visual texture reconstruction, DVS need extra information apart from the output spikes. This paper introduces a fovea-like sampling method inspired by the neuron signal processing in retina, which aims at visual texture reconstruction only taking advantage of the properties of spikes. In the proposed method, the pixels independently respond to the luminance changes with temporal asynchronous spikes. Analyzing the arrivals of spikes makes it possible to restore the luminance information, enabling reconstructing the natural scene for visualization. Three decoding methods of spike stream for texture reconstruction are proposed for high-speed motion and stationary scenes. Compared to conventional frame-based camera and DVS, our model can achieve better image quality and higher flexibility, which is capable of changing the way that demanding machine vision applications are built.

Citations (75)

Summary

We haven't generated a summary for this paper yet.