Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Strengthened Fractional Sobolev Type Inequalities in Besov Spaces (2201.00753v2)

Published 3 Jan 2022 in math.AP, math.CA, and math.FA

Abstract: The purpose of this article is twofold. The first is to strengthen fractional Sobolev type inequalities in Besov spaces via the classical Lorentz space. In doing so, we show that the Sobolev inequality in Besov spaces is equivalent to the fractional Hardy inequality and the iso-capacitary type inequality. Secondly, we will strengthen fractional Sobolev type inequalities in Besov spaces via capacitary Lorentz spaces associated with Besov capacities. For this purpose, we first study the embedding of the associated capacitary Lorentz space to the classical Lorentz space. Then, the embedding of the Besov space to the capacitary Lorentz space is established. Meanwhile, we show that these embeddings are closely related to the iso-capacitary type inequalities in terms of a new-introduced fractional $(\beta, p, q)$-perimeter. Moreover, characterizations of more general Sobolev type inequalities in Besov spaces have also been established.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube