Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust parameter estimation using the ensemble Kalman filter (2201.00611v4)

Published 3 Jan 2022 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: Standard maximum likelihood or Bayesian approaches to parameter estimation for stochastic differential equations are not robust to perturbations in the continuous-in-time data. In this paper, we give a rather elementary explanation of this observation in the context of continuous-time parameter estimation using an ensemble Kalman filter. We employ the frequentist perspective to shed new light on three robust estimation techniques; namely subsampling the data, rough path corrections, and data filtering. We illustrate our findings through a simple numerical experiment.

Citations (3)

Summary

We haven't generated a summary for this paper yet.