Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Maximum Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes (1611.00170v4)

Published 1 Nov 2016 in math.OC, math.PR, and stat.ML

Abstract: We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e. the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state, filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This article sheds new light on the theory of convergence in continuous time.

Citations (26)

Summary

We haven't generated a summary for this paper yet.