Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Verification of Deep Neural Networks in Perception Tasks Using Fuzzy Logic and Concept Embeddings (2201.00572v2)

Published 3 Jan 2022 in cs.CV, cs.LG, and cs.LO

Abstract: One major drawback of deep convolutional neural networks (CNNs) for use in safety critical applications is their black-box nature. This makes it hard to verify or monitor complex, symbolic requirements on already trained computer vision CNNs. In this work, we present a simple, yet effective, approach to verify that a CNN complies with symbolic predicate logic rules which relate visual concepts. It is the first that (1) does not modify the CNN, (2) may use visual concepts that are no CNN in- or output feature, and (3) can leverage continuous CNN confidence outputs. To achieve this, we newly combine methods from explainable artificial intelligence and logic: First, using supervised concept embedding analysis, the output of a CNN is post-hoc enriched by concept outputs. Second, rules from prior knowledge are modelled as truth functions that accept the CNN outputs, and can be evaluated with little computational overhead. We here investigate the use of fuzzy logic, i.e., continuous truth values, and of proper output calibration, which both theoretically and practically show slight benefits. Applicability is demonstrated on state-of-the-art object detectors for three verification use-cases, where monitoring of rule breaches can reveal detection errors.

Citations (6)

Summary

We haven't generated a summary for this paper yet.