Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The SAMME.C2 algorithm for severely imbalanced multi-class classification (2112.14868v1)

Published 30 Dec 2021 in stat.ML and cs.LG

Abstract: Classification predictive modeling involves the accurate assignment of observations in a dataset to target classes or categories. There is an increasing growth of real-world classification problems with severely imbalanced class distributions. In this case, minority classes have much fewer observations to learn from than those from majority classes. Despite this sparsity, a minority class is often considered the more interesting class yet developing a scientific learning algorithm suitable for the observations presents countless challenges. In this article, we suggest a novel multi-class classification algorithm specialized to handle severely imbalanced classes based on the method we refer to as SAMME.C2. It blends the flexible mechanics of the boosting techniques from SAMME algorithm, a multi-class classifier, and Ada.C2 algorithm, a cost-sensitive binary classifier designed to address highly class imbalances. Not only do we provide the resulting algorithm but we also establish scientific and statistical formulation of our proposed SAMME.C2 algorithm. Through numerical experiments examining various degrees of classifier difficulty, we demonstrate consistent superior performance of our proposed model.

Summary

We haven't generated a summary for this paper yet.