Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Intelligent Document Processing -- Methods and Tools in the real world (2112.14070v1)

Published 28 Dec 2021 in cs.IR

Abstract: The originality of this publication is to look at the subject of IDP (Intelligent Document Processing) from the perspective of an end-user and industrialist and not that of a Computer Science researcher. This domain is one part of the challenge of information digitalisation that constitutes the Industrial Revolution of the twenty first century (Industry 4.0) and this paper looks specifically at the difficult areas of classifying, extracting information and subsequent integration into business processes with respect to forms and invoices. Since the focus is on practical implementation a brief review is carried out of the market in commercial tools for OCR, document classification and data extraction in so far as this is publicly available together with pricing (if known). Brief definitions of the main terms encountered in Computer Science publications and commercial prospectuses are provided in order to de-mystify the language for the layman. A small number of practical tests are carried out on a few real documents in order to illustrate the capabilities of tools that are commonly available at a reasonable price. The unsolved (so far) issue of tables contained in invoices is raised. The case of a typical large industrial company is evoked where the requirement is to extract 100 per cent of the information with 100 per cent reliability in order to integrate into the back-end Enterprise Resource Planning system. Finally a brief description is given of the state-of-the-art research by the huge corporations who are pushing the boundaries of deep learning techniques further and further with massive computing and financial power - progress that will undoubtedly trickle down into the real world at some later date. The paper finishes by asking the question whether the objectives and timing of the commercial world and the progress of Computer Science are fully aligned.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.