Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cucker-Smale model with finite speed of information propagation: well-posedness, flocking and mean-field limit (2112.12806v1)

Published 23 Dec 2021 in math.AP

Abstract: We study a variant of the Cucker-Smale model where information between agents propagates with a finite speed $\mathfrak{c}>0$. This leads to a system of functional differential equations with state-dependent delay. We prove that, if initially the agents travel slower than $c$, then the discrete model admits unique global solutions. Moreover, under a generic assumption on the influence function, we show that there exists a critical information propagation speed $\mathfrak{c}\ast>0$ such that if $\mathfrak{c}\geq\mathfrak{c}\ast$, the system exhibits asymptotic flocking in the sense of the classical definition of Cucker and Smale. For constant initial datum the value of $\mathfrak{c}\ast$ is explicitly calculable. Finally, we derive a mean-field limit of the discrete system, which is formulated in terms of probability measures on the space of time-dependent trajectories. We show global well-posedness of the mean-field problem and argue that it does not admit a description in terms of the classical Fokker-Planck equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.