Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Observability estimate for the wave equation with variable coefficients (2112.09537v1)

Published 17 Dec 2021 in math.AP and math.OC

Abstract: This paper is devoted to a study of observability estimate for the wave equation with variable coefficients $(h{jk}(x))_{n\times n}$ ($n\in\mathbb{N})$. We consider both the observation point lies outside the domain and the observation point lies inside the domain. Based on a Carleman estimate for the ultra-hyperbolic operator and a delicate treatment of observation region, we obtain two observability estimates with explicit observability constants. The key improvements are: (1) we improve the requirement of waiting time $T$; (2) we improve the size of the observation region (see Fingure 1 and Fingure 2 for the case of $(h{jk}(x))_{n\times n}=I_n)$ .

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)