Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-vehicle Cooperative Visual Perception for Autonomous Driving under Complex Road and Traffic Scenarios (2112.09298v2)

Published 17 Dec 2021 in cs.CV

Abstract: Human-vehicle cooperative driving has become the critical technology of autonomous driving, which reduces the workload of human drivers. However, the complex and uncertain road environments bring great challenges to the visual perception of cooperative systems. And the perception characteristics of autonomous driving differ from manual driving a lot. To enhance the visual perception capability of human-vehicle cooperative driving, this paper proposed a cooperative visual perception model. 506 images of complex road and traffic scenarios were collected as the data source. Then this paper improved the object detection algorithm of autonomous vehicles. The mean perception accuracy of traffic elements reached 75.52%. By the image fusion method, the gaze points of human drivers were fused with vehicles' monitoring screens. Results revealed that cooperative visual perception could reflect the riskiest zone and predict the trajectory of conflict objects more precisely. The findings can be applied in improving the visual perception algorithms and providing accurate data for planning and control.

Summary

We haven't generated a summary for this paper yet.