Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Cooperative Perception for Autonomous Vehicles Using Imperfect Communication (2404.08013v1)

Published 10 Apr 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Sharing and joint processing of camera feeds and sensor measurements, known as Cooperative Perception (CP), has emerged as a new technique to achieve higher perception qualities. CP can enhance the safety of Autonomous Vehicles (AVs) where their individual visual perception quality is compromised by adverse weather conditions (haze as foggy weather), low illumination, winding roads, and crowded traffic. To cover the limitations of former methods, in this paper, we propose a novel approach to realize an optimized CP under constrained communications. At the core of our approach is recruiting the best helper from the available list of front vehicles to augment the visual range and enhance the Object Detection (OD) accuracy of the ego vehicle. In this two-step process, we first select the helper vehicles that contribute the most to CP based on their visual range and lowest motion blur. Next, we implement a radio block optimization among the candidate vehicles to further improve communication efficiency. We specifically focus on pedestrian detection as an exemplary scenario. To validate our approach, we used the CARLA simulator to create a dataset of annotated videos for different driving scenarios where pedestrian detection is challenging for an AV with compromised vision. Our results demonstrate the efficacy of our two-step optimization process in improving the overall performance of cooperative perception in challenging scenarios, substantially improving driving safety under adverse conditions. Finally, we note that the networking assumptions are adopted from LTE Release 14 Mode 4 side-link communication, commonly used for Vehicle-to-Vehicle (V2V) communication. Nonetheless, our method is flexible and applicable to arbitrary V2V communications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. L. Chen, Y. Li, C. Huang, B. Li, Y. Xing, D. Tian, L. Li, Z. Hu, X. Na, Z. Li, et al., “Milestones in autonomous driving and intelligent vehicles: Survey of surveys,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1046–1056, 2022.
  2. S. P. H. Boroujeni, A. Razi, S. Khoshdel, F. Afghah, J. L. Coen, L. O’Neill, P. Fule, A. Watts, N.-M. T. Kokolakis, and K. G. Vamvoudakis, “A comprehensive survey of research towards ai-enabled unmanned aerial systems in pre-, active-, and post-wildfire management,” Information Fusion, p. 102369, 2024.
  3. R. Xu, H. Xiang, X. Xia, X. Han, J. Li, and J. Ma, “Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 2583–2589, IEEE, 2022.
  4. R. Xu, Z. Tu, H. Xiang, W. Shao, B. Zhou, and J. Ma, “Cobevt: Cooperative bird’s eye view semantic segmentation with sparse transformers,” arXiv preprint arXiv:2207.02202, 2022.
  5. A. Sarlak, A. Razi, X. Chen, and R. Amin, “Diversity maximized scheduling in roadside units for traffic monitoring applications,” in 2023 IEEE 48th Conference on Local Computer Networks (LCN), pp. 1–4, IEEE, 2023.
  6. S. P. H. Boroujeni and A. Razi, “Ic-gan: An improved conditional generative adversarial network for rgb-to-ir image translation with applications to forest fire monitoring,” Expert Systems with Applications, vol. 238, p. 121962, 2024.
  7. R. Xu, H. Xiang, Z. Tu, X. Xia, M.-H. Yang, and J. Ma, “V2x-vit: Vehicle-to-everything cooperative perception with vision transformer,” in European conference on computer vision, pp. 107–124, Springer, 2022.
  8. J. Li, R. Xu, X. Liu, J. Ma, Z. Chi, J. Ma, and H. Yu, “Learning for vehicle-to-vehicle cooperative perception under lossy communication,” IEEE Transactions on Intelligent Vehicles, 2023.
  9. H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle selection and resource optimization for federated learning in vehicular edge computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11073–11087, 2021.
  10. J. A. Cortés-Osorio, J. B. Gómez-Mendoza, and J. C. Riaño-Rojas, “Velocity estimation from a single linear motion blurred image using discrete cosine transform,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 10, pp. 4038–4050, 2018.
  11. D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular edge computing: A selective model aggregation approach,” IEEE Access, vol. 8, pp. 23920–23935, 2020.
  12. M. Gonzalez-Martín, M. Sepulcre, R. Molina-Masegosa, and J. Gozalvez, “Analytical models of the performance of c-v2x mode 4 vehicular communications,” IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1155–1166, 2018.
  13. M. Chinipardaz, S. Amraee, and A. Sarlak, “Joint downlink user association and interference avoidance with a load balancing approach in backhaul-constrained hetnets,” Plos one, vol. 19, no. 3, p. e0298352, 2024.
  14. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving simulator,” in Conference on robot learning, pp. 1–16, PMLR, 2017.
  15. M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated learning over wireless networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 269–283, 2020.
  16. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE signal processing magazine, vol. 37, no. 3, pp. 50–60, 2020.
  17. X. Li, L. Lu, W. Ni, A. Jamalipour, D. Zhang, and H. Du, “Federated multi-agent deep reinforcement learning for resource allocation of vehicle-to-vehicle communications,” IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8810–8824, 2022.
  18. C. Reading, A. Harakeh, J. Chae, and S. L. Waslander, “Categorical depth distribution network for monocular 3d object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8555–8564, 2021.
  19. Y. Wang, V. C. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon, “Detr3d: 3d object detection from multi-view images via 3d-to-2d queries,” in Conference on Robot Learning, pp. 180–191, PMLR, 2022.
  20. S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation and detection from point cloud,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 770–779, 2019.
  21. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point clouds,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12697–12705, 2019.
  22. Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.
  23. Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Subcategory-aware convolutional neural networks for object proposals and detection,” in 2017 IEEE winter conference on applications of computer vision (WACV), pp. 924–933, IEEE, 2017.
  24. J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3d proposal generation and object detection from view aggregation,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8, IEEE, 2018.
  25. T. Zhou, J. Chen, Y. Shi, K. Jiang, M. Yang, and D. Yang, “Bridging the view disparity between radar and camera features for multi-modal fusion 3d object detection,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1523–1535, 2023.
  26. Q. Chen, S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds,” in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 514–524, IEEE, 2019.
  27. H. Qiu, P. Huang, N. Asavisanu, X. Liu, K. Psounis, and R. Govindan, “Autocast: Scalable infrastructure-less cooperative perception for distributed collaborative driving,” arXiv preprint arXiv:2112.14947, 2021.
  28. Z. Y. Rawashdeh and Z. Wang, “Collaborative automated driving: A machine learning-based method to enhance the accuracy of shared information,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3961–3966, IEEE, 2018.
  29. E. Arnold, M. Dianati, R. de Temple, and S. Fallah, “Cooperative perception for 3d object detection in driving scenarios using infrastructure sensors,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 1852–1864, 2020.
  30. H. Yu, Y. Luo, M. Shu, Y. Huo, Z. Yang, Y. Shi, Z. Guo, H. Li, X. Hu, J. Yuan, et al., “Dair-v2x: A large-scale dataset for vehicle-infrastructure cooperative 3d object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21361–21370, 2022.
  31. J. Cui, H. Qiu, D. Chen, P. Stone, and Y. Zhu, “Coopernaut: End-to-end driving with cooperative perception for networked vehicles,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17252–17262, 2022.
  32. R. L. Cruz, “A calculus for network delay. i. network elements in isolation,” IEEE Transactions on information theory, vol. 37, no. 1, pp. 114–131, 1991.
  33. A. Razi, A. Valehi, and E. Bentley, “Delay minimization by adaptive framing policy in cognitive sensor networks,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, IEEE, 2017.

Summary

We haven't generated a summary for this paper yet.