Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Programmatic Reward Design by Example (2112.08438v2)

Published 14 Dec 2021 in cs.LG, cs.AI, and cs.PL

Abstract: Reward design is a fundamental problem in reinforcement learning (RL). A misspecified or poorly designed reward can result in low sample efficiency and undesired behaviors. In this paper, we propose the idea of programmatic reward design, i.e. using programs to specify the reward functions in RL environments. Programs allow human engineers to express sub-goals and complex task scenarios in a structured and interpretable way. The challenge of programmatic reward design, however, is that while humans can provide the high-level structures, properly setting the low-level details, such as the right amount of reward for a specific sub-task, remains difficult. A major contribution of this paper is a probabilistic framework that can infer the best candidate programmatic reward function from expert demonstrations. Inspired by recent generative-adversarial approaches, our framework searches for the most likely programmatic reward function under which the optimally generated trajectories cannot be differentiated from the demonstrated trajectories. Experimental results show that programmatic reward functionslearned using this framework can significantly outperform those learned using existing reward learning algo-rithms, and enable RL agents to achieve state-of-the-artperformance on highly complex tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Weichao Zhou (11 papers)
  2. Wenchao Li (48 papers)
Citations (12)
X Twitter Logo Streamline Icon: https://streamlinehq.com