Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Column and Row Ranks of a Matrix (2112.06638v1)

Published 23 Nov 2021 in math.HO, cs.NA, and math.NA

Abstract: Every m by n matrix A with rank r has exactly r independent rows and r independent columns. The fact has become the most fundamental theorem in linear algebra such that we may favor it in an unconscious way. The sole aim of this paper is to give a self-contained introduction to concepts and mathematical tools for the rank of a matrix in order to seamlessly introduce how it works in applied linear algebra. However, we clearly realize our inability to cover all the useful and interesting results concerning this topic and given the paucity of scope to present this discussion, e.g., a proof via the injective linear map. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Summary

We haven't generated a summary for this paper yet.