Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Matrix Rank Algorithms and Applications (1203.6705v2)

Published 30 Mar 2012 in cs.DS, cs.NA, and math.NA

Abstract: We consider the problem of computing the rank of an m x n matrix A over a field. We present a randomized algorithm to find a set of r = rank(A) linearly independent columns in ~O(|A| + r\omega) field operations, where |A| denotes the number of nonzero entries in A and \omega < 2.38 is the matrix multiplication exponent. Previously the best known algorithm to find a set of r linearly independent columns is by Gaussian elimination, with running time O(mnr{\omega-2}). Our algorithm is faster when r < max(m,n), for instance when the matrix is rectangular. We also consider the problem of computing the rank of a matrix dynamically, supporting the operations of rank one updates and additions and deletions of rows and columns. We present an algorithm that updates the rank in ~O(mn) field operations. We show that these algorithms can be used to obtain faster algorithms for various problems in numerical linear algebra, combinatorial optimization and dynamic data structure.

Citations (15)

Summary

We haven't generated a summary for this paper yet.