Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Single-Core K-Nearest Neighbor Graph Computation (2112.06630v1)

Published 13 Dec 2021 in cs.LG, cs.CG, cs.NA, and math.NA

Abstract: Fast and reliable K-Nearest Neighbor Graph algorithms are more important than ever due to their widespread use in many data processing techniques. This paper presents a runtime optimized C implementation of the heuristic "NN-Descent" algorithm by Wei Dong et al. for the l2-distance metric. Various implementation optimizations are explained which improve performance for low-dimensional as well as high dimensional datasets. Optimizations to speed up the selection of which datapoint pairs to evaluate the distance for are primarily impactful for low-dimensional datasets. A heuristic which exploits the iterative nature of NN-Descent to reorder data in memory is presented which enables better use of locality and thereby improves the runtime. The restriction to the l2-distance metric allows for the use of blocked distance evaluations which significantly increase performance for high dimensional datasets. In combination the optimizations yield an implementation which significantly outperforms a widely used implementation of NN-Descent on all considered datasets. For instance, the runtime on the popular MNIST handwritten digits dataset is halved.

Citations (1)

Summary

We haven't generated a summary for this paper yet.