Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Linear Models Using Distributed Iterative Hessian Sketching (2112.04101v1)

Published 8 Dec 2021 in math.OC, cs.LG, cs.NA, cs.SY, eess.SY, and math.NA

Abstract: This work considers the problem of learning the Markov parameters of a linear system from observed data. Recent non-asymptotic system identification results have characterized the sample complexity of this problem in the single and multi-rollout setting. In both instances, the number of samples required in order to obtain acceptable estimates can produce optimization problems with an intractably large number of decision variables for a second-order algorithm. We show that a randomized and distributed Newton algorithm based on Hessian-sketching can produce $\epsilon$-optimal solutions and converges geometrically. Moreover, the algorithm is trivially parallelizable. Our results hold for a variety of sketching matrices and we illustrate the theory with numerical examples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.