Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quinary forms and paramodular forms (2112.03797v1)

Published 7 Dec 2021 in math.NT

Abstract: We work out the exact relationship between algebraic modular forms for a two-by-two general unitary group over a definite quaternion algebra, and those arising from genera of positive-definite quinary lattices, relating stabilisers of local lattices with specific open compact subgroups, paramodular at split places, and with Atkin-Lehner operators. Combining this with the recent work of R\"osner and Weissauer, proving conjectures of Ibukiyama on Jacquet-Langlands type correspondences (mildly generalised here), provides an effective tool for computing Hecke eigenvalues for Siegel modular forms of degree two and paramodular level. It also enables us to prove examples of congruences of Hecke eigenvalues connecting Siegel modular forms of degrees two and one. These include some of a type conjectured by Harder at level one, supported by computations of Fretwell at higher levels, and a subtly different congruence discovered experimentally by Buzzard and Golyshev.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.