Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling Structured Inference with Randomization (2112.03638v3)

Published 7 Dec 2021 in cs.LG, cs.CL, cs.DS, stat.AP, and stat.ML

Abstract: Deep discrete structured models have seen considerable progress recently, but traditional inference using dynamic programming (DP) typically works with a small number of states (less than hundreds), which severely limits model capacity. At the same time, across machine learning, there is a recent trend of using randomized truncation techniques to accelerate computations involving large sums. Here, we propose a family of randomized dynamic programming (RDP) algorithms for scaling structured models to tens of thousands of latent states. Our method is widely applicable to classical DP-based inference (partition, marginal, reparameterization, entropy) and different graph structures (chains, trees, and more general hypergraphs). It is also compatible with automatic differentiation: it can be integrated with neural networks seamlessly and learned with gradient-based optimizers. Our core technique approximates the sum-product by restricting and reweighting DP on a small subset of nodes, which reduces computation by orders of magnitude. We further achieve low bias and variance via Rao-Blackwellization and importance sampling. Experiments over different graphs demonstrate the accuracy and efficiency of our approach. Furthermore, when using RDP for training a structured variational autoencoder with a scaled inference network, we achieve better test likelihood than baselines and successfully prevent posterior collapse. code at: https://github.com/FranxYao/RDP

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com