Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The numerical solution of semidiscrete linear evolution problems on the finite interval using the Unified Transform Method (2112.01631v1)

Published 2 Dec 2021 in math.NA and cs.NA

Abstract: We study a semidiscrete analogue of the Unified Transform Method introduced by A. S. Fokas, to solve initial-boundary-value problems for linear evolution partial differential equations with constant coefficients on the finite interval $x \in (0,L)$. The semidiscrete method is applied to various spatial discretizations of several first and second-order linear equations, producing the exact solution for the semidiscrete problem, given appropriate initial and boundary data. From these solutions, we derive alternative series representations that are better suited for numerical computations. In addition, we show how the Unified Transform Method treats derivative boundary conditions and ghost points introduced by the choice of discretization stencil and we propose the notion of "natural" discretizations. We consider the continuum limit of the semidiscrete solutions and compare with standard finite-difference schemes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.