Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimates for fractional semilinear optimal control on Lipschitz polytopes (2206.12023v2)

Published 24 Jun 2022 in math.NA, cs.NA, and math.OC

Abstract: We adopt the integral definition of the fractional Laplace operator and analyze solution techniques for fractional, semilinear, and elliptic optimal control problems posed on Lipschitz polytopes. We consider two strategies of discretization: a semidiscrete scheme where the admissible control set is not discretized and a fully discrete scheme where such a set is discretized with piecewise constant functions. As an instrumental step, we derive error estimates for finite element discretizations of fractional semilinear elliptic partial differential equations (PDEs) on quasi-uniform and graded meshes. With these estimates at hand, we derive error bounds for the semidiscrete scheme and improve the ones that are available in the literature for the fully discrete scheme.

Citations (6)

Summary

We haven't generated a summary for this paper yet.