Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lagrange and $H(\operatorname{curl},{\cal B})$ based Finite Element formulations for the relaxed micromorphic model (2112.00382v1)

Published 1 Dec 2021 in math.NA and cs.NA

Abstract: Modeling the unusual mechanical properties of metamaterials is a challenging topic for the mechanics community and enriched continuum theories are promising computational tools for such materials. The so-called relaxed micromorphic model has shown many advantages in this field. In this contribution, we present the significant aspects related to the relaxed micromorphic model realization with the finite element method. The variational problem is derived and different FEM-formulations for the two-dimensional case are presented. These are a nodal standard formulation $H1({\cal B}) \times H1({\cal B})$ and a nodal-edge formulation $H1({\cal B}) \times H(\operatorname{curl}, {\cal B})$, where the latter employs the N\'ed\'elec space. However, the implementation of higher-order N\'ed\'elec elements is not trivial and requires some technicalities which are demonstrated. We discuss the convergence behavior of Lagrange-type and tangential-conforming finite element discretizations. Moreover, we analyze the characteristic length effect on the different components of the model and reveal how the size-effect property is captured via this characteristic length.

Citations (20)

Summary

We haven't generated a summary for this paper yet.