Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On H1, H(curl) and H(sym Curl) finite elements for matrix-valued Curl problems (2202.08740v1)

Published 17 Feb 2022 in math.NA and cs.NA

Abstract: In this work we test the numerical behaviour of matrix-valued fields approximated by finite element subspaces of $[\mathit{H}1]{3\times 3}$, $[\mathit{H}(\mathrm{curl})]3$ and $\mathit{H}(\mathrm{sym}\mathrm{Curl})$ for a linear abstract variational problem connected to the relaxed micromorphic model. The formulation of the corresponding finite elements is introduced, followed by numerical benchmarks and our conclusions. The relaxed micromorphic continuum model reduces the continuity assumptions of the classical micromorphic model by replacing the full gradient of the microdistortion in the free energy functional with the Curl. This results in a larger solution space for the microdistortion, namely $[\mathit{H}(\mathrm{curl})]3$ in place of the classical $[\mathit{H}1]{3\times 3}$. The continuity conditions on the microdistortion can be further weakened by taking only the symmetric part of the Curl. As shown in recent works, the new appropriate space for the microdistortion is then $\mathit{H}(\mathrm{sym}\mathrm{Curl})$. The newly introduced space gives rise to a new differential complex for the relaxed micromorphic continuum theory.

Summary

We haven't generated a summary for this paper yet.