Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is the use of Deep Learning and Artificial Intelligence an appropriate means to locate debris in the ocean without harming aquatic wildlife? (2112.00190v1)

Published 1 Dec 2021 in cs.LG, cs.CV, and eess.IV

Abstract: With the global issue of plastic debris ever expanding, it is about time that the technology industry stepped in. This study aims to assess whether deep learning can successfully distinguish between marine life and man-made debris underwater. The aim is to find if we are safely able to clean up our oceans with Artificial Intelligence without disrupting the delicate balance of the aquatic ecosystems. The research explores the use of Convolutional Neural Networks from the perspective of protecting the ecosystem, rather than primarily collecting rubbish. We did this by building a custom-built, deep learning model, with an original database including 1,644 underwater images and used a binary classification to sort synthesised material from aquatic life. We concluded that although it is possible to safely distinguish between debris and life, further exploration with a larger database and stronger CNN structure has the potential for much more promising results.

Citations (9)

Summary

We haven't generated a summary for this paper yet.