Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Scaling approach to nuclear structure in high-energy heavy-ion collisions (2111.15559v3)

Published 30 Nov 2021 in nucl-th, hep-ex, hep-ph, and nucl-ex

Abstract: In high-energy heavy-ion collisions, the initial condition of the produced quark-gluon plasma (QGP) and its evolution are sensitive to collective nuclear structure parameters describing the shape and radial profiles of the nuclei. We find a general scaling relation between these parameters and many experimental observables such as elliptic flow, triangular flow, and particle multiplicity distribution. In particular, the ratios of observables between two isobar systems depend only on the differences of these parameters, but not on the details of the final state interactions, hence offering a new way to constrain the QGP initial condition. Using this scaling relation, we show how the structure parameters of ${96}_{44}$Ru and ${96}_{40}$Zr conspire to produce the rich centrality dependences of these ratios, as measured by the STAR Collaboration. Our scaling approach demonstrates that isobar collisions are a precision tool to probe the initial condition of heavy-ion collisions, as well as the collective nuclear structures, including the neutron skin, of the atomic nuclei across energy scales.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. Takashi Nakatsukasa, Kenichi Matsuyanagi, Masayuki Matsuo,  and Kazuhiro Yabana, “Time-dependent density-functional description of nuclear dynamics,” Rev. Mod. Phys. 88, 045004 (2016), arXiv:1606.04717 [nucl-th] .
  2. Witold Nazarewicz, “Challenges in Nuclear Structure Theory,” J. Phys. G 43, 044002 (2016), arXiv:1603.02490 [nucl-th] .
  3. P. Möller, A. J. Sierk, T. Ichikawa,  and H. Sagawa, “Nuclear ground-state masses and deformations: FRDM(2012),” Atom. Data Nucl. Data Tabl. 109-110, 1–204 (2016), arXiv:1508.06294 [nucl-th] .
  4. Yuchen Cao, Sylvester E. Agbemava, Anatoli V. Afanasjev, Witold Nazarewicz,  and Erik Olsen, “Landscape of pear-shaped even-even nuclei,” Phys. Rev. C 102, 024311 (2020), arXiv:2004.01319 [nucl-th] .
  5. I. Angeli and K. P. Marinova, “Table of experimental nuclear ground state charge radii: An update,” Atom. Data Nucl. Data Tabl. 99, 69–95 (2013).
  6. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi,  and N. Takahashi, “Measurements of Interaction Cross-Sections and Nuclear Radii in the Light p Shell Region,” Phys. Rev. Lett. 55, 2676–2679 (1985).
  7. A. Rosenhauer, H. Stocker, J. A. Maruhn,  and W. Greiner, “Influence of shape fluctuations in relativistic heavy ion collisions,” Phys. Rev. C 34, 185–190 (1986).
  8. Bao-An Li, “Uranium on uranium collisions at relativistic energies,” Phys. Rev. C 61, 021903 (2000), arXiv:nucl-th/9910030 .
  9. Ulrich W. Heinz and Anthony Kuhlman, “Anisotropic flow and jet quenching in ultrarelativistic U + U collisions,” Phys. Rev. Lett. 94, 132301 (2005), arXiv:nucl-th/0411054 .
  10. Peter Filip, Richard Lednicky, Hiroshi Masui,  and Nu Xu, “Initial eccentricity in deformed 197197{}^{197}start_FLOATSUPERSCRIPT 197 end_FLOATSUPERSCRIPTAu + 197197{}^{197}start_FLOATSUPERSCRIPT 197 end_FLOATSUPERSCRIPTAu and 238238{}^{238}start_FLOATSUPERSCRIPT 238 end_FLOATSUPERSCRIPTU + 238238{}^{238}start_FLOATSUPERSCRIPT 238 end_FLOATSUPERSCRIPTU collisions at sNN=200subscript𝑠NN200\mbox{$\sqrt{s_{\mathrm{NN}}}$}=200square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 80, 054903 (2009).
  11. Q. Y. Shou, Y. G. Ma, P. Sorensen, A. H. Tang, F. Videbæk,  and H. Wang, “Parameterization of Deformed Nuclei for Glauber Modeling in Relativistic Heavy Ion Collisions,” Phys. Lett. B 749, 215–220 (2015), arXiv:1409.8375 [nucl-th] .
  12. Giuliano Giacalone, Jacquelyn Noronha-Hostler, Matthew Luzum,  and Jean-Yves Ollitrault, “Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions,” Phys. Rev. C 97, 034904 (2018), arXiv:1711.08499 [nucl-th] .
  13. Giuliano Giacalone, ‘‘Observing the deformation of nuclei with relativistic nuclear collisions,” Phys. Rev. Lett. 124, 202301 (2020a), arXiv:1910.04673 [nucl-th] .
  14. Giuliano Giacalone, “Constraining the quadrupole deformation of atomic nuclei with relativistic nuclear collisions,” Phys. Rev. C 102, 024901 (2020b), arXiv:2004.14463 [nucl-th] .
  15. Giuliano Giacalone, Jiangyong Jia,  and Vittorio Somà, “Accessing the shape of atomic nuclei with relativistic collisions of isobars,” Phys. Rev. C 104, L041903 (2021a), arXiv:2102.08158 [nucl-th] .
  16. Giuliano Giacalone, Jiangyong Jia,  and Chunjian Zhang, “Impact of Nuclear Deformation on Relativistic Heavy-Ion Collisions: Assessing Consistency in Nuclear Physics across Energy Scales,” Phys. Rev. Lett. 127, 242301 (2021b), arXiv:2105.01638 [nucl-th] .
  17. Jiangyong Jia, Shengli Huang,  and Chunjian Zhang, “Probing nuclear quadrupole deformation from correlation of elliptic flow and transverse momentum in heavy ion collisions,” Phys. Rev. C 105, 014906 (2022a), arXiv:2105.05713 [nucl-th] .
  18. Jiangyong Jia, “Shape of atomic nuclei in heavy ion collisions,” Phys. Rev. C 105, 014905 (2022a), arXiv:2106.08768 [nucl-th] .
  19. Benjamin Bally, Michael Bender, Giuliano Giacalone,  and Vittorio Somà, “Evidence of the triaxial structure of 𝟏𝟐𝟗129\boldsymbol{{}^{129}}start_FLOATSUPERSCRIPT bold_129 end_FLOATSUPERSCRIPTXe at the Large Hadron Collider,” Phys. Rev. Lett. 128, 082301 (2022), arXiv:2108.09578 [nucl-th] .
  20. L. Adamczyk et al. (STAR), “Azimuthal anisotropy in U+++U and Au+++Au collisions at RHIC,” Phys. Rev. Lett. 115, 222301 (2015), arXiv:1505.07812 [nucl-ex] .
  21. S. Acharya et al. (ALICE), “Anisotropic flow in Xe-Xe collisions at 𝐬NN=5.44subscript𝐬NN5.44\mathbf{\sqrt{s_{\rm{NN}}}=5.44}square-root start_ARG bold_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = bold_5.44 TeV,” Phys. Lett. B 784, 82–95 (2018), arXiv:1805.01832 [nucl-ex] .
  22. Albert M Sirunyan et al. (CMS), “Charged-particle angular correlations in XeXe collisions at sNN=subscript𝑠NNabsent\sqrt{s_{{}_{\mathrm{NN}}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT roman_NN end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 5.44 TeV,” Phys. Rev. C 100, 044902 (2019), arXiv:1901.07997 [hep-ex] .
  23. Georges Aad et al. (ATLAS), ‘‘Measurement of the azimuthal anisotropy of charged-particle production in X⁢e+X⁢e𝑋𝑒𝑋𝑒Xe+Xeitalic_X italic_e + italic_X italic_e collisions at sNN=5.44subscript𝑠NN5.44\sqrt{s_{\mathrm{NN}}}=5.44square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.44 TeV with the ATLAS detector,” Phys. Rev. C 101, 024906 (2020), arXiv:1911.04812 [nucl-ex] .
  24. Jiangyong Jia, “Nuclear deformation effects via Au+Au and U+U collisions from STAR,” Contribution to the VIthth{}^{\rm th}start_FLOATSUPERSCRIPT roman_th end_FLOATSUPERSCRIPT International Conference on the Initial Stages of High-Energy Nuclear Collisions, January 2021, https://indico.cern.ch/event/854124/contributions/4135480/.
  25. Derek Teaney and Li Yan, “Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics,” Phys. Rev. C 86, 044908 (2012), arXiv:1206.1905 [nucl-th] .
  26. Wataru Horiuchi, “Single-particle decomposition of nuclear surface diffuseness,” PTEP 2021, 123D01 (2021), arXiv:2110.04982 [nucl-th] .
  27. Patrick Carzon, Skandaprasad Rao, Matthew Luzum, Matthew Sievert,  and Jacquelyn Noronha-Hostler, “Possible octupole deformation of 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb and the ultracentral v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to v3subscript𝑣3v_{3}italic_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT puzzle,” Phys. Rev. C 102, 054905 (2020), arXiv:2007.00780 [nucl-th] .
  28. Hanlin Li, Hao-jie Xu, Jie Zhao, Zi-Wei Lin, Hanzhong Zhang, Xiaobao Wang, Caiwan Shen,  and Fuqiang Wang, “Multiphase transport model predictions of isobaric collisions with nuclear structure from density functional theory,” Phys. Rev. C 98, 054907 (2018), arXiv:1808.06711 [nucl-th] .
  29. Chunjian Zhang, Somadutta Bhatta,  and Jiangyong Jia, “Ratios of collective flow observables in high-energy isobar collisions are insensitive to final-state interactions,” Phys. Rev. C 106, L031901 (2022), arXiv:2206.01943 [nucl-th] .
  30. Hao-jie Xu, Wenbin Zhao, Hanlin Li, Ying Zhou, Lie-Wen Chen,  and Fuqiang Wang, “Probing nuclear structure with mean transverse momentum in relativistic isobar collisions,”   (2021a), arXiv:2111.14812 [nucl-th] .
  31. Shujun Zhao, Hao-jie Xu, Yu-Xin Liu,  and Huichao Song, “Probing the nuclear deformation with three-particle asymmetric cumulant in RHIC isobar runs,”  (2022), arXiv:2204.02387 [nucl-th] .
  32. Jiangyong Jia, Giuliano Giacalone,  and Chunjian Zhang, “Separating the impact of nuclear skin and nuclear deformation on elliptic flow and its fluctuations in high-energy isobar collisions,”   (2022c), arXiv:2206.10449 [nucl-th] .
  33. D. Everett et al. (JETSCAPE), “Multisystem Bayesian constraints on the transport coefficients of QCD matter,” Phys. Rev. C 103, 054904 (2021a), arXiv:2011.01430 [hep-ph] .
  34. Govert Nijs, Wilke van der Schee, Umut Gürsoy,  and Raimond Snellings, “Transverse Momentum Differential Global Analysis of Heavy-Ion Collisions,” Phys. Rev. Lett. 126, 202301 (2021), arXiv:2010.15130 [nucl-th] .
  35. Mohamed Abdallah et al. (STAR), “Search for the chiral magnetic effect with isobar collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=200 GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 105, 014901 (2022), arXiv:2109.00131 [nucl-ex] .
  36. Jiangyong Jia, “Probing triaxial deformation of atomic nuclei in high-energy heavy ion collisions,” Phys. Rev. C 105, 044905 (2022b), arXiv:2109.00604 [nucl-th] .
  37. Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang,  and Subrata Pal, “A Multi-phase transport model for relativistic heavy ion collisions,” Phys. Rev. C72, 064901 (2005), arXiv:nucl-th/0411110 [nucl-th] .
  38. Jun Xu and Che Ming Ko, “Pb-Pb collisions at sN⁢N=2.76subscript𝑠𝑁𝑁2.76\sqrt{s_{NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 2.76 TeV in a multiphase transport model,” Phys. Rev. C 83, 034904 (2011), arXiv:1101.2231 [nucl-th] .
  39. Mohamed Abdallah et al. (STAR), “Azimuthal anisotropy measurements of strange and multistrange hadrons in U+U𝑈𝑈U+Uitalic_U + italic_U collisions at sN⁢N=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG =193 GeV at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 103, 064907 (2021), arXiv:2103.09451 [nucl-ex] .
  40. Chunjian Zhang and Jiangyong Jia, “Evidence of Quadrupole and Octupole Deformations in Zr96+Zr96 and Ru96+Ru96 Collisions at Ultrarelativistic Energies,” Phys. Rev. Lett. 128, 022301 (2022), arXiv:2109.01631 [nucl-th] .
  41. Guo-Liang Ma and Adam Bzdak, “Long-range azimuthal correlations in proton–proton and proton–nucleus collisions from the incoherent scattering of partons,” Phys. Lett. B739, 209–213 (2014), arXiv:1404.4129 [hep-ph] .
  42. Adam Bzdak and Guo-Liang Ma, “Elliptic and triangular flow in p𝑝pitalic_p+Pb and peripheral Pb+Pb collisions from parton scatterings,” Phys. Rev. Lett. 113, 252301 (2014), arXiv:1406.2804 [hep-ph] .
  43. Hao-jie Xu, Hanlin Li, Xiaobao Wang, Caiwan Shen,  and Fuqiang Wang, “Determine the neutron skin type by relativistic isobaric collisions,” Phys. Lett. B 819, 136453 (2021b), arXiv:2103.05595 [nucl-th] .
  44. G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera,  and C. W. de Jager, “Nuclear Ground State Charge Radii from Electromagnetic Interactions,” Atomic Data and Nuclear Data Tables 60, 177 (1995).
  45. A. Trzcinska, J. Jastrzebski, P. Lubinski, F. J. Hartmann, R. Schmidt, T. von Egidy,  and B. Klos, “Neutron density distributions deduced from anti-protonic atoms,” Phys. Rev. Lett. 87, 082501 (2001).
  46. Georges Aad et al. (ATLAS), “Measurement of the azimuthal anisotropy for charged particle production in sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV lead-lead collisions with the ATLAS detector,” Phys. Rev. C86, 014907 (2012), arXiv:1203.3087 [hep-ex] .
  47. Jiangyong Jia, Gang Wang,  and Chunjian Zhang, “Impact of event activity variable on the ratio of observables in isobar collisions,” Phys. Lett. B 833, 137312 (2022d), arXiv:2203.12654 [nucl-th] .
  48. D. Everett et al. (JETSCAPE), “Phenomenological constraints on the transport properties of QCD matter with data-driven model averaging,” Phys. Rev. Lett. 126, 242301 (2021b), arXiv:2010.03928 [hep-ph] .
  49. J. Scott Moreland, Jonah E. Bernhard,  and Steffen A. Bass, “Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions,” Phys. Rev. C 92, 011901 (2015), arXiv:1412.4708 [nucl-th] .
  50. Govert Nijs and Wilke van der Schee, “Hadronic Nucleus-Nucleus Cross Section and the Nucleon Size,” Phys. Rev. Lett. 129, 232301 (2022), arXiv:2206.13522 [nucl-th] .
  51. James M. Lattimer and Maddapa Prakash, “Neutron Star Observations: Prognosis for Equation of State Constraints,” Phys. Rept. 442, 109–165 (2007), arXiv:astro-ph/0612440 .
  52. Bao-An Li, Lie-Wen Chen,  and Che Ming Ko, “Recent Progress and New Challenges in Isospin Physics with Heavy-Ion Reactions,” Phys. Rept. 464, 113–281 (2008), arXiv:0804.3580 [nucl-th] .
  53. Aage Bohr and Ben R Mottelson, eds., Nuclear Structure (World Scientific, 1998).
  54. “See supplemental material at [url will be inserted by publisher] for derivation of eq. (5) and scaling behavior observed in the glauber model which can be compared with fig. 2.” .
  55. M. Centelles, X. Roca-Maza, X. Vinas,  and M. Warda, “Origin of the neutron skin thickness of 208Pb in nuclear mean-field models,” Phys. Rev. C 82, 054314 (2010), arXiv:1010.5396 [nucl-th] .
  56. Hanlin Li, Hao-jie Xu, Ying Zhou, Xiaobao Wang, Jie Zhao, Lie-Wen Chen,  and Fuqiang Wang, “Probing the neutron skin with ultrarelativistic isobaric collisions,” Phys. Rev. Lett. 125, 222301 (2020), arXiv:1910.06170 [nucl-th] .
Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.