Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform convergence for sequences of best L^{p} approximation (2111.15324v1)

Published 30 Nov 2021 in math.NA and cs.NA

Abstract: Let $f$ be a continuous monotone real function defined on a compact interval $[a,b]$ of the real line. Given a sequence of partitions of $[a,b]$, $% \Delta_n $, $\left\Vert {\Delta }{n}\right\Vert \rightarrow 0$, and given $l\geq 0,m\geq 1$, let $\mathbf{S}{m}{l}(\Delta {n}) $ be the space of all functions with the same monotonicity of $f$ that are $% \Delta_n$-piecewise polynomial of order $m$ and that belong to the smoothness class $C{l}[a,b]$. In this paper we show that, for any $m\geq 2l+1$, $\bullet$ sequences of best $Lp$-approximation in $\mathbf{S}{m}{l}(\Delta {n})$ converge uniformly to $f$ on any compact subinterval of $(a,b)$; $\bullet$ sequences of best $Lp$-approximation in $\mathbf{S}{m}{0}(\Delta _{n})$ converge uniformly to $f$ on the whole interval $[a,b] $.

Summary

We haven't generated a summary for this paper yet.