Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured $(\min,+)$-Convolution And Its Applications For The Shortest Vector, Closest Vector, and Separable Nonlinear Knapsack Problems (2209.04812v2)

Published 11 Sep 2022 in cs.CC, cs.DM, cs.DS, and math.OC

Abstract: In this work we consider the problem of computing the $(\min, +)$-convolution of two sequences $a$ and $b$ of lengths $n$ and $m$, respectively, where $n \geq m$. We assume that $a$ is arbitrary, but $b_i = f(i)$, where $f(x) \colon [0,m) \to \mathbb{R}$ is a function with one of the following properties: 1. the linear case, when $f(x) =\beta + \alpha \cdot x$; 2. the monotone case, when $f(i+1) \geq f(i)$, for any $i$; 3. the convex case, when $f(i+1) - f(i) \geq f(i) - f(i-1)$, for any $i$; 4. the concave case, when $f(i+1) - f(i) \leq f(i) - f(i-1)$, for any $i$; 5. the piece-wise linear case, when $f(x)$ consist of $p$ linear pieces; 6. the polynomial case, when $f \in \mathbb{Z}d[x]$, for some fixed $d$. To the best of our knowledge, the cases 4-6 were not considered in literature before. We develop true sub-quadratic algorithms for them. We apply our results to the knapsack problem with a separable nonlinear objective function, shortest lattice vector, and closest lattice vector problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.