Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CLIP Meets Video Captioning: Concept-Aware Representation Learning Does Matter (2111.15162v2)

Published 30 Nov 2021 in cs.CV

Abstract: For video captioning, "pre-training and fine-tuning" has become a de facto paradigm, where ImageNet Pre-training (INP) is usually used to encode the video content, then a task-oriented network is fine-tuned from scratch to cope with caption generation. This paper first investigates the impact of the recently proposed CLIP (Contrastive Language-Image Pre-training) on video captioning. Through the empirical study on INP vs. CLIP, we identify the potential deficiencies of INP and explore the key factors for accurate description generation. The results show that the INP-based model is tricky to capture concepts' semantics and sensitive to irrelevant background information. By contrast, the CLIP-based model significantly improves the caption quality and highlights the importance of concept-aware representation learning. With these findings, we propose Dual Concept Detection (DCD) further to inject concept knowledge into the model during training. DCD is an auxiliary task that requires a caption model to learn the correspondence between video content and concepts and the co-occurrence relations between concepts. Experiments on MSR-VTT and VATEX demonstrate the effectiveness of DCD, and the visualization results further reveal the necessity of learning concept-aware representations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bang Yang (19 papers)
  2. Tong Zhang (569 papers)
  3. Yuexian Zou (119 papers)
Citations (17)