Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Social Welfare in Selfish Multi-Modal Routing using Strategic Information Design for Quantal Response Travelers (2111.15069v1)

Published 30 Nov 2021 in cs.GT

Abstract: Traditional selfish routing literature quantifies inefficiency in transportation systems with single-attribute costs using price-of-anarchy (PoA), and provides various technical approaches (e.g. marginal cost pricing) to improve PoA of the overall network. Unfortunately, practical transportation systems have dynamic, multi-attribute costs and the state-of-the-art technical approaches proposed in the literature are infeasible for practical deployment. In this paper, we offer a paradigm shift to selfish routing via characterizing idiosyncratic, multi-attribute costs at boundedly-rational travelers, as well as improving network efficiency using strategic information design. Specifically, we model the interaction between the system and travelers as a Stackelberg game, where travelers adopt multi-attribute logit responses. We model the strategic information design as an optimization problem, and develop a novel approximate algorithm to steer Logit Response travelers towards social welfare using strategic Information design (in short, LoRI). We demonstrate the performance of LoRI on a Wheatstone network with multi-modal route choices at the travelers. In our simulation experiments, we find that LoRI outperforms SSSP in terms of system utility, especially when there is a motive mismatch between the two systems and improves social welfare. For instance, we find that LoRI persuades a traveler towards a socially optimal route for 66.66% of the time on average, when compared to SSSP, when the system has 0.3 weight on carbon emissions. However, we also present a tradeoff between system performance and runtime in our simulation results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.