Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FastTrees: Parallel Latent Tree-Induction for Faster Sequence Encoding (2111.14031v1)

Published 28 Nov 2021 in cs.CL and cs.LG

Abstract: Inducing latent tree structures from sequential data is an emerging trend in the NLP research landscape today, largely popularized by recent methods such as Gumbel LSTM and Ordered Neurons (ON-LSTM). This paper proposes FASTTREES, a new general purpose neural module for fast sequence encoding. Unlike most previous works that consider recurrence to be necessary for tree induction, our work explores the notion of parallel tree induction, i.e., imbuing our model with hierarchical inductive biases in a parallelizable, non-autoregressive fashion. To this end, our proposed FASTTREES achieves competitive or superior performance to ON-LSTM on four well-established sequence modeling tasks, i.e., LLMing, logical inference, sentiment analysis and natural language inference. Moreover, we show that the FASTTREES module can be applied to enhance Transformer models, achieving performance gains on three sequence transduction tasks (machine translation, subject-verb agreement and mathematical language understanding), paving the way for modular tree induction modules. Overall, we outperform existing state-of-the-art models on logical inference tasks by +4% and mathematical language understanding by +8%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bill Tuck Weng Pung (2 papers)
  2. Alvin Chan (15 papers)

Summary

We haven't generated a summary for this paper yet.