Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bidirectional Tree-Structured LSTM with Head Lexicalization (1611.06788v1)

Published 21 Nov 2016 in cs.CL

Abstract: Sequential LSTM has been extended to model tree structures, giving competitive results for a number of tasks. Existing methods model constituent trees by bottom-up combinations of constituent nodes, making direct use of input word information only for leaf nodes. This is different from sequential LSTMs, which contain reference to input words for each node. In this paper, we propose a method for automatic head-lexicalization for tree-structure LSTMs, propagating head words from leaf nodes to every constituent node. In addition, enabled by head lexicalization, we build a tree LSTM in the top-down direction, which corresponds to bidirectional sequential LSTM structurally. Experiments show that both extensions give better representations of tree structures. Our final model gives the best results on the Standford Sentiment Treebank and highly competitive results on the TREC question type classification task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhiyang Teng (26 papers)
  2. Yue Zhang (620 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.