Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Invariants to Understand Unsupervised Out-of-Distribution Detection (2111.13362v2)

Published 26 Nov 2021 in cs.CV

Abstract: Unsupervised out-of-distribution (U-OOD) detection has recently attracted much attention due its importance in mission-critical systems and broader applicability over its supervised counterpart. Despite this increase in attention, U-OOD methods suffer from important shortcomings. By performing a large-scale evaluation on different benchmarks and image modalities, we show in this work that most popular state-of-the-art methods are unable to consistently outperform a simple anomaly detector based on pre-trained features and the Mahalanobis distance (MahaAD). A key reason for the inconsistencies of these methods is the lack of a formal description of U-OOD. Motivated by a simple thought experiment, we propose a characterization of U-OOD based on the invariants of the training dataset. We show how this characterization is unknowingly embodied in the top-scoring MahaAD method, thereby explaining its quality. Furthermore, our approach can be used to interpret predictions of U-OOD detectors and provides insights into good practices for evaluating future U-OOD methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lars Doorenbos (16 papers)
  2. Raphael Sznitman (60 papers)
  3. Pablo Márquez-Neila (26 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.