Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

No True State-of-the-Art? OOD Detection Methods are Inconsistent across Datasets (2109.05554v1)

Published 12 Sep 2021 in cs.LG

Abstract: Out-of-distribution detection is an important component of reliable ML systems. Prior literature has proposed various methods (e.g., MSP (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018), Mahalanobis (Lee et al., 2018)), claiming they are state-of-the-art by showing they outperform previous methods on a selected set of in-distribution (ID) and out-of-distribution (OOD) datasets. In this work, we show that none of these methods are inherently better at OOD detection than others on a standardized set of 16 (ID, OOD) pairs. We give possible explanations for these inconsistencies with simple toy datasets where whether one method outperforms another depends on the structure of the ID and OOD datasets in question. Finally, we show that a method outperforming another on a certain (ID, OOD) pair may not do so in a low-data regime. In the low-data regime, we propose a distance-based method, Pairwise OOD detection (POD), which is based on Siamese networks and improves over Mahalanobis by sidestepping the expensive covariance estimation step. Our results suggest that the OOD detection problem may be too broad, and we should consider more specific structures for leverage.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fahim Tajwar (12 papers)
  2. Ananya Kumar (27 papers)
  3. Sang Michael Xie (21 papers)
  4. Percy Liang (239 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.