Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid optimization approach for employee rostering: Use cases at Swissgrid and lessons learned (2111.10845v1)

Published 21 Nov 2021 in cs.AI, cs.NE, and math.OC

Abstract: Employee rostering is a process of assigning available employees to open shifts. Automating it has ubiquitous practical benefits for nearly all industries, such as reducing manual workload and producing flexible, high-quality schedules. In this work, we develop a hybrid methodology which combines Mixed-Integer Linear Programming (MILP) with scatter search, an evolutionary algorithm, having as use case the optimization of employee rostering for Swissgrid, where it is currently a largely manual process. The hybrid methodology guarantees compliance with labor laws, maximizes employees' preference satisfaction, and distributes workload as uniformly as possible among them. Above all, it is shown to be a robust and efficient algorithm, consistently solving realistic problems of varying complexity to near-optimality an order of magnitude faster than an MILP-alone approach using a state-of-the-art commercial solver. Several practical extensions and use cases are presented, which are incorporated into a software tool currently being in pilot use at Swissgrid.

Summary

We haven't generated a summary for this paper yet.