Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Language Patterns in a Medical Licensure Exam Item Bank (2111.10501v1)

Published 20 Nov 2021 in cs.CL, cs.AI, cs.IR, and cs.LG

Abstract: This study examines the use of NLP models to evaluate whether language patterns used by item writers in a medical licensure exam might contain evidence of biased or stereotypical language. This type of bias in item language choices can be particularly impactful for items in a medical licensure assessment, as it could pose a threat to content validity and defensibility of test score validity evidence. To the best of our knowledge, this is the first attempt using ML and NLP to explore language bias on a large item bank. Using a prediction algorithm trained on clusters of similar item stems, we demonstrate that our approach can be used to review large item banks for potential biased language or stereotypical patient characteristics in clinical science vignettes. The findings may guide the development of methods to address stereotypical language patterns found in test items and enable an efficient updating of those items, if needed, to reflect contemporary norms, thereby improving the evidence to support the validity of the test scores.

Citations (1)

Summary

We haven't generated a summary for this paper yet.